Cross Layer Extended Parameter Call Admission Control for Future Networks
نویسندگان
چکیده
The Next Generation Network (NGN) is to deliver anything, anytime anywhere with full quality of service (QoS) guarantees. The network designers need to overcome the NGN’s challenges namely; heterogeneous wireless access environments, multiple traffic types, flexible bandwidth allocation and cross layer design issues among others. To guarantee quality of service for these NGN’s, a call admission control scheme addressing the main challenges of NGN’s is presented. This is a cross layer call admission control (CAC) scheme featuring multiple traffic types. The featured model effectively combines call level and packet level call admission control issues. It is based on Code Division Multiple Access (CDMA) air interface which together with Orthogonal Frequency Division Multiple (OFDM) access are the most popular air interface technologies. Traditionally, signal to interference ratio (SIR) has solely been used as the call admission control parameter for CDMA networks. However, the results indicate that due to the nature of the multimedia traffic more parameters need to be incorporated in the call admission control scheme. The presented CAC scheme uses extended user specified QoS parameters of signal to interference ratio (SIR) and delay to accept or reject a call and guarantee a certain call blocking probability QoS metric. The results from the developed model clearly indicate that a CAC algorithm incorporating more parameters outperforms one with less admission control parameters.
منابع مشابه
A Two-Threshold Guard Channel Scheme for Minimizing Blocking Probability in Communication Networks
In this paper, we consider the call admission problem in cellular network with two classes of voice users. In the first part of paper, we introduce a two-threshold guard channel policy and study its limiting behavior under the stationary traffic. Then we give an algorithm for finding the optimal number of guard channels. In the second part of this paper, we give an algorithm, which minimizes th...
متن کاملDynamic radio resource allocation for 3G and beyond mobile wireless networks
Next generation of wireless cellular networks aim at supporting a diverse range of multimedia services to mobile users with guaranteed quality of service (QoS). Resource allocation and call admission control (CAC) are key management functions in future 3G and 4G cellular networks, in order to provide multimedia applications to mobile users with QoS guarantees and efficient resource utilization....
متن کاملAdaptive call admission control and resource allocation in multi server wireless/cellular network
The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adj...
متن کاملPerformance of a Global Congestion Measure for CDMA Networks
A recently proposed global congestion measure for CDMA networks is applied to call admission control, call dropping, and band allocation in multi-carrier CDMA networks. It is shown to perform comparably with existing techniques for call dropping, and better than existing techniques for admission control and band allocation. Difficulties arising in the measurement of this parameter are also inve...
متن کاملPerformance of a Global Congestion Measure for CDMA Networks
A recently proposed global congestion measure for CDMA networks is applied to call admission control, call dropping, and band allocation in multi-carrier CDMA networks. It is shown to perform comparably with existing techniques for call dropping, and better than existing techniques for admission control and band allocation. Difficulties arising in the measurement of this parameter are also inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012